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1. BACKGROUND

Recent interest in the use of guided kinetic energy missiles and
projectiles for the air-defense and anti-missile application raises
important questions on the suitability of current guidance mechanisms,
and whether they will realize the minimum miss distance requirements of
a hit-to-kill warhead. Traditional missile guidance algorithms require
the use of a blast and fragmentation warhead to ensure target kill, since
some miss distance is predictable. Currently, the use of sophisticated
proportional navigation systems in conjunction with a variable speed
missile may still result in an unreasonable missile turn rate and lateral
acceleration at the end game, to ensure hit-to-kill agaiist a maneuvering
target. Therefore, a limited investigation into a more suitable hit-to-kill
guidance algorithm was conducted, consistent with recent advances in
computer and electronic miniaturization, which offer the possibility of
alternate approaches to missile guidance.
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2. KINEMATICS OF INTERCEPT COURSES

AMCP 706-107 provides a very concise and simplified explanation of
the kinematics of different intercept algorithms which are typically
employed by guided missiles.! That discussion is repeated here as an
introduction to the guidance algorithm to be developed. Four of the five
most common navigational methods for solving the intercept problem are
shown in Figure 2.2. The fifth method, deviated pursuit, is a slight
modification of the pursuit geometry, so it is not presented graphically,
but will be discussed. Before any of these methods can be analyzed, the
geometry of the intercept problem is defined in Figure 2.1.

Figure 2.1
Geometry of the Intercept Problem

-
7
R o
0 is angle of heading { o
B is angie of line of sight &0
R 15 range between missiie and target 3* 4
v is velocity vector MISSILE v
7 is missile to target velocity ratio, ’
(r=)
Ur / X N
. 8

subscript M refers to missile
subscript T refers to target .
subscript § refers to direction along the S

line of sight c o - -
subscnipt o refers to direction perpendicular v
to line of sight Xy

1 Research and Development of Materiel, Engineering Design Handbook: Elements of
Armament Engineering Part Two, Ballistics. AMCP 706-107, Army Materiel Command,
September 1963.




Figure 2.2
Kinematics of Intercept Courses

1 2 3 4.5 6
TARGET —=3-¢-F-
\
MISSILE
HORIZONTAL

TARCET i [

2 6y = angle of miscile heading
$ = angle of line of aight
~ WRIZONTAL

(a) Line of sight. Defined as a course in
which the missile is guided so as to remain on
the line joining the target and point of control.

(b) Pursuit. Lead or deviated pursuit course
is defined as a course in which the angle between
the velocity vector and line of sight from the mis-
sile to the target is fixed. For purposes of
illustration, lead angle is assumed to be zero
and only pure pursuit is described

(6, = B).

(c) Constant bearind. A course in which the
line of sight from the missile to the target main-
tains a constant direction in space. If both mis-
sile and target speeds are constant, a collision
course results

a8 .
(dz =8 '0)'

(d) Proportional. A course in which the rate
of change of missile heading is directly propor-
tional to the rate of rotation of the line of sight
from the missile to target

A8 .dp . . )
—_— = A— 0y = K .
( dt a o o 8




Using the geometry in Figure 2.1, several relationships between the
parameters are presented.

The range R, at any given time:

R=

© by~

(vs, = Vs, A+ Ry (1)
Intercept will take place only if R is always decreasing and for R

to decrease

vy — v, <0 , OF negative.

The rate of change of the range is:

drR .
2 - R0, -0,
= v, cos(, — B)— v, cos(6,, - B) (2)
= vu[—;,-cos(er - B)-cos(6,, —B)]
and

dﬂ ;. var ~ vau
P
__ rsin(@, — B) - v,,sin(6,, - f)
- R (3)
vu[—;jsin(er - B)-sin(6,, -ﬁ)]
R




Based on these mathematical relationships, the following
characteristics of the navigational methods follow.

A. Line of Sight (Beam Rider)

A beam rider always flies the line of sight from a tracker on the
ground to the target and requires associated ground equipment to
illuminate the target and provide the missile with path deviation signals.
Turning rates are always finite when y>1 , hence, lateral accelerations
must be determined as functions of altitude, range, relative missile
velocity, and angle of the line of sight, 8.

B. Pure Pursuit

The missile is always headed toward the target along the line of
sight:
Oy =

Vg, =V, 0,=-0;

In other words, intercept takes place from the tail of the target, unless
the target is met head on. The missile must maneuver but the pursuit
course is the simplest to mechanize in a guidance system. With pure
pursuit navigation, the lateral acceleration of a missile attacking a non-
maneuvering target will be infinite at the instant of intercept if the
missile velocity is more than twice the target velocity. The lateral
acceleration will be zero at the instant of intercept if the missile
velocity is less than twice the target velocity. @ From these observations,
unless some miss distance is allowable, it is impractical to use a pursuit
course when the missile velocity exceeds twice the target velocity, since
it will be impossible to achieve an infinite lateral acceleration.




C. Deviated Pursuit
A deviated pursuit course is where the angle between the missile

velocity vector Vy and the line of sight (6, -B) s fixed. Thus, if
§=p-6, .(2) and (3) become, respectively:

R=V.cosp-V,cosé (4)

B=_V,sinﬁ;vusin5 (5)

Figure 2.3 shows a plot of the relationship between y and sind which
must exist in order that i remain finite (Region Il) or zero for the
deviated pursuit.

One sees that only for 1=y<2 will it be possible to select a &
which does not yield an infinite turning rate. Of course, in practice, when
turning rates called for are in excess of the maximum missile turning
rate, the missile will remain in its maximum turn until it cuts across the
line of the target path and then re-enters the proper course or is lost.
Since lateral acceleration, a4, =V,8 , characteristics of turning rate apply
to lateral accelerations when Vy is constant.

D. Constant Bearing

The missile is navigated so that the target always has the same
bearing, B=0 . For a non-maneuvering target moving with a constant
velocity, this means that a missile with constant velocity will ideally be
directed onto a straight line collision course. In practice, however,
inherent system errors and dynamic lag has historically made a perfect
constant bearing course difficult to achieve. This technique is most often
used for the anti-aircraft artillery fire control problem, where the
computer determines 6, , the direction to point the guns in order to
accomplish intercept.




E. Proportional

The angular velocity g, , of the missile is a constant K, times the
angular velocity, ;3 of the line of sight; 6,=KB . Hence, 8 =KB+0o .
Both pursuit and constant bearing navigation methods are special cases of
proportional navigation. For example:

When K=1 and 6,=0, 6, =p, which is pursuit navigation.

When K=« ,then f= ﬁt:o , which is constant bearing
navigation. °°

It could be shown that for a maneuvering target and a variable speed
missile, the required missile rate of turn, 6, , is always finite when
K=4 . Most operational guided missile weapons are designed with some
type of proportional navigation.

Figure 2.3
Conditions for Finite Turning Rate (Deviated Pursuit)

10 { £ ‘Infinite
REGION I: —x%os B > 2 Turming
1 - 72 sinz 1Y Rate
REGION 1I: cos §
y 5 } X <2
2 y sin § = 1
REGION II
— ~x cos§ = 2

0 sin § 10 /i - v° sin® &




3. THE HIT-TO-KILL GUIDANCE CHALLENGE

The above guidance methods, which have found wide spread use in
the guided missile as well as anti-aircraft fire control application each
present unique challenges to the kinetic energy hit-to-kill weapon system.
The line of sight and pursuit modes start the guided projectile upon a
course aimed directly at the target, which clearly will not be there when
the projectile arrives. These techniques knowingly waste much needed
kinetic energy bringing the projectile on to the target, even if the target
is non-maneuvering. In a kinetic energy type missile or projectile
application, the projectile is expected to be traveling at velocities in
excess of those typically found in modern guided missiles. At such high
rates of travel, even small turning rates will create large transverse
loads on the projectile structure. In addition, the heat management and
structural effects of high speed travel on aerodynamic control surfaces
will be significant. If thrust vectoring or thrust attitude control is
employed on the kinetic energy projectile or missile, efficient use of
these control resources will be required to ensure that overall parasitic
weight is minimized. For these reasons, it makes little sense to
intentionally aim the missile to miss the target in the early stages of the
intercept.

Proportional navigation begins to employ a more energy efficient
target intercept algorithm. As Figure 2.1 (d) shows, by initially leading
the target, a high speed missile will anticipate where the target will
eventually be and will gradually change direction and be brought onto a
collision course which is more perpendicular to the flight path of the
target. The rate at which the missile will deviate its course is a function
of the navigation constant K and the crossing speed of the target. A
faster target will force a faster turning rate in the missile for the same
value of K. A higher or lower value of K will bring the missile onto the
target faster or slower, respectively for the same target speed. Clearly,
the value of K designed into the missile must be an acceptable average
based on the performance parameters of various targets to be engaged. As
mentioned earlier, a value of K24 ensures that the missile turn rate is
always finite. However, this finite rate may also be unreasonably high for
a kinetic energy projectile or missile. In addition, the maximum turning
rate of the missile will occur just before intercept, when the missile is




at its most perpendicular aspect to the target. Therefore, a highly agile
target may still be able to shake off the kinetic energy projectile at the
last instant, since the missile navigation constant K has a multiplying
effect on the required missile maneuvering acceleration.



4. THE OPTIMUM HIT-TO-KILL INTERCEPT ALGORITHM

Thus far, this discussion has identified the intercept limiting
parameters of turning rate, lateral acceleration, and for ths kinetic
energy projectile or missile, its intercept energy efficiency. As a result,
the one intercept concept which minimizes turning rate, lateral
acceleration, while at the same time ensuring efficient use of the missile
maneuver energy, is one which involves a constant bearing. Although it
was pointed out that in the past a constant bearing intercept required a
cooperative target in the sense that it did not maneuver after projectile
launch, which is why it is employed with air-defense guns, the following
analysis will show that even if the target is highly agile, continuously
updating the constant bearing direction remains the most efficient
intercept approach for a high speed and guided kinetic energy hit-to-kill
missile or projectile. This approach also remains the most efficient if
the target is non-maneuvering or following a predictable ballistic
trajectory.

Figure 4.1 shows the three-dimensional geometry used to develop
this hit-to-kill algorithm. From the nomenclature shown in Figure 4.1, the
approach to the intercept solution is to define the missile and target in
terms of their position and velocity vectors. The vector components for
the missile and target position and velocity may be defined based on any
arbitrary inertial reference frame. The most convenient may simply be
the instantaneous location of the missile, since this will result in the xu,
ym, and zy terms reducing to zero. Then solve the system of simultaneous
equations to identify the intercept point for that moment in time.

Once this intercept point is identified, the missile turn angle, O,
required to place the missile onto the intercept vector is calculated. The
missile then executes its maximum turning rate on to this intercept
vector, by turning through the angle ©. During flight, the target and
missile position and velocity vectors are updated and additional course
corrects are made accordingly. The following equations develop the
mathematics for this algorithm.

10




lVrl=)a.rz+brz+cTZ=Vr (6)

Vil =)au? + 6,7 +c.* = v, (7)

V, =ayi+b,j+cuk (8)
V,=a,i+b.j+ck (9)
Ruy = (% =2 )i + (v, = 3,0 )J + (2, = 220 ) (10)
Ry =(x =50 + (= yr)i + (2~ 2 )k (11)
|Rm| =V, At where, Ar=time to intercept (12)
|Rn| = vy (13)

The missile guidance system then must continuouély solve the
following system of four simultaneous equations in order to get the
intercept point in three dimensions:

X, = xp =a;At (14)
Yi ~yr =bAt (15)
3, -2 = A (16)
VMAt=Rx,—xu)z+(y,-y,,)z+(z, -z,) (17)

11




The intercept point is most easily calculated once the intercept

time At is solved. At can be solved with the following quadratic
equation based on the missile and target vectors:

N_—BijB’—4AC

- 24

(18)

where,

A=[a + b+, -V} Jar?
B= [Za,.(xr —xy)+ 2b,(y, - )’u)”‘ 2¢,(z; - 2, )]At
C=[(xr -x) +(r =) + (2 ‘Zu)2]

Select only the positive value for At At this point x;, y;, and z,,
fall out of equations (14), (15), and (16). The angle, ©, and its
orientation with respect to the inertial reference frame is determined by

resolving the dot and cross products of the missile velocity and intercept
range vectors, previously calculated.

Figure 4.1

Three-Dimensional Hit-to-Kill Intercept Geometry
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5. HIT-TO-KILL SPEED AND TURNING RATE REQUIREMENTS

Employing the above hit-to-kill intercept algorithm results in the
following missile speed and turning rate requirements to ensure a hit on
any maneuvering target.

A. Hit-to-Kill Missile Speed Requirements

Figure 5.1 shows the general two-dimensional triangular
relationship between the missile (subscript M), the target (subscript T ),
and their closing range (R ) vectors, once the missile is oriented onto the
appropriate instantaneous intercept vector. The two-dimensional
representation is valid for this analysis, since the most efficient
intercept will be realized once the missile has oriented itself into the
two-dimensional plane with the target velocity vector. This maneuver of
converting the intercept to a two-dimensional problem should be the first
performed by the intercepting missile. Based on the triangular intercept
geometry, the following observations can be made on the required missile
to target speed, depending on the resulting direction of intercept:

|4 n
for & <], <—
v, h<3

for -Vi>l, 0<Bs<~r
VT

In other words, in order to ensure that the missile can intercept all
possible targets, from all attack directions, the missile must be able to
fly, at a minimum, slightly faster than the target. With this relationship,
the time of flight becomes the only variable. Nevertheless, an intercept is
always possible if the missile flies faster than the target. Naturally,
other operational requirements, in addition to the need for high impact
velocity to realize a kinetic energy kill, will dictate a much higher
missile to target velocity ratio. However, from a theoretical standpoint,
extremely high rate of missile travel is not required for intercept.

13




Figure 5.1
Two-Dimensional Hit-To-Kill Intercept Geometry

VMAII
missile

intercept

B. HIT-TO-KILL MISSILE TURNING RATE REQUIREMENTS

For all practical purposes, the target is expected to attempt evasive
action in order to avoid being hit. In addition, the effect of target evasive
action on the required missile turning rate and resuiting lateral
acceleration must also be understood. Figure 5.1 showed the two-
dimensional triangular relationship between the missile and target
vectors and the closing range vector, once the missile was oriented on the
most efficient instantaneous intercept angle. In Figure 5.2, the target
attempts an evasive maneuver by turning through the angle Ac ,
which sets up an intercept angular error, Af. . The following
equations formulate the required missile turning rate, B, and the
centripetal acceleration in order to bring the missile onto the next
instantaneous intercept vector.

14




Figure 5.2
Geometry of an Evasive Maneuver

base on the geometry in Figure 5.2:

_ V;Atsin(a)
Vbt =50 () - (19)
.. 1 V

def —=r

efining m——Ts
yields

sin(8) = S(%) (20)

Y

differentiating (20) with respect to time:

. _ cos(a) .
h= ycos(ﬂ)a (21)

15




What would be interesting to know is under what conditions does a
target maneuver result in a maximum required missile maneuver, in order
to remain on an appropriate intercept path. In other words, based on the
velocity and angular relationship defined in (21), when does a change in «
maximize a change in B, and by how much? To answer this, equation (20)
is differentiated twice with respect to o, and then evaluated for the
angular conditions which maximize the rates of change.

differentiating (20) with respect to a vyields:

dap _ cos(a)
sB) =" (22)

and the second derivative becomes:

o)

-sinf| 1- cos'(B) (23)

d'f _
do? cos(f)

evaluating (23) for the maximum condition:

16




which occurs under the following angle conditions:

B=0,71
a=0,r

In other words, when the missile and target are flying parallel to
each other, in either a head-on closing or tail-chase condition, any turn
performed by the target maximizes the required turn by the missile, in
order to affect an intercept.

Evaluating (21) for the maximum turning rates yields:

B _ 1cos(0,7) .
max ( missile) ,y COS(O, ﬂ') max(rarget)

or

Bmax(missile) = T,:idm(mga) (24)

In summary, equation (24) shows that the missile will be required
to turn through an angle in proportion to the target’s evasive turn, which
is multiplied by the ratio of the missile to target speeds. However, in
spite of the greater turning rate requirement, this is easily accomplished
by the missile, since it is flying faster and will sweep out the required
angle proportionally faster. In addition, since the missile intends to fly
to where the target will again be located, the lateral acceleration
requirement when performing this heading correction turn is not
magnified by the ratio of missile to target speeds, as shown:

From the geometry in Figure 5.2, the angular rates can be defined by:

ﬁ=wr
a=w,

17




Circular motion defines the following acceleration relationships for
both the missile and the target, based on their turning rates:

A
0, =5m g, =8
2 ~ Vi (25)

where A is the normal or centripetal acceleration due to circular
motion.

Using (24) and equating the missile acceleration to the target
acceleration by substituting equation (25) yields:

VT T VM

ATM=A,,_ (27)

Therefore, even under the most extreme evasive action conditions,
with this hit-to-kill algorithm, the missile will only have to perform a
turn which induces a lateral acceleration no greater than the lateral
acceleration with which the target is making its evasive turn. There is no
lateral acceleration magnification due to a greater missile to target
speed ratio.

18




6. EXAMPLE INTERCEPTS

To give perspective to the kinematics of this hit-to-kill algorithm,
the equations were modeled in a simple computer simulation. The
following figures show the missile response, depending on the velocity
ratio and the target evasive action. For each of these example intercepts,
the target is simply performing a maximum acceleration turn, which
places it in a circular path. The target parameters are a flight speed of
500 meters/sec, or approximately Mach 1.5, and its maximum lateral
acceleration is 9 Gs. This acceleration limit corresponds to the
performance limitation of typical fighter aircraft, based on the endurance
of the pilot. At this speed and acceleration, the target will be making a
turn with a radius of approximately 2800 meters. For all intercepts, the
missile will be similarly limited in its lateral acceleration to 9 Gs.
Although, without a pilot, the missile could easily perform at a higher
acceleration level, since air frames can usually be designed considerably
stronger. Nevertheless, this acceleration limitation tests the minimum
requirements for intercept.

Figure 6.1 shows the resulting intercept when the kinetic energy
missile is fired directly at the target, at a range of 20 km, at a flight
speed of 2000 maters/second or about Mach 6. Intercept occurs within 12
seconds. Despite the target's great agility, the missile anticipates where
it will eventually be, even though this point is continuously changing, and
makes a direct hit with minimum course correction. Figure 6.2 shows an
intercept with a 1000 meter/sec or Mach 3 missile (intercept in 25
seconds), and Figure 6.3 shows the intercept when the missile flies at
only 700 meters/sec or Mach 2 (intercept in 32 seconds). Although in the
last two intercepts, the target turns completely around and heads back at
the missile, the intercept is doubly stressed, since the target twice
passed through the maximum turn rate requirement. Had the target
straightened out or changed turn direction, the missile would still have
found it, since even the target must make a smooth transition when
changing direction. As with any type of target maneuver, the next
instantaneous intercept point is readily predicted.

19




Figure 6.1
Example Intercept
(Vm 2000 m/s, V,500 m/s, Rop 20 km)

intercept

target start

missile start

Figure 6.2
Example Intercept
(Vm 1000 m/s, Vi 500 m/s, Rg 20 km)

intercept

target start

missile start
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Figure 6.3
Example Intercept
(Vm 700 m/s, V; 500 m/s, Ry 20 km)

intercept

target start

missile start
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7. SUMMARY AND CONCLUSIONS

This analysis has shown that a suitable hit-to-kill algorithm exists
which is compatible with the high velocity guidance challenges of kinetic
energy warhead projectiles and missiles. The kinematics of this
algorithm also show that the interceptor is required, at a minimum, to be
able to fly at least faster than the target to ensure an intercept solution
from all possible engagement directions, endurance and KE kill limitations
not withstanding. More significant is the observation that using this
guidance algorithm greatly reduces the lateral acceleration requirements
of the interceptor. To ensure an intercept against a maneuvering target,
this algorithm requires that the missile simply be able to withstand at
least as much lateral acceleration as the target. When considering the set
of realistic targets to include manned aircraft, cruise missiles, and
tactical ballistic missiles, achieving this level of structural and
maneuver performance in an interceptor is well within the state-of-the-
art. Development of suitable guidance, control, and sensor/tracker
hardware, in particular to satisfy the need for accurate position and
velocity vector determination for both the missile and target, remains to
be demonstrated. However, advances in computer miniaturization and
large increases in processing speed, coupled with miniature inertial
sensors, with or without the use of global positioning sensors remove
much of the difficulty in implementing this algorithm. The clear
advantages to the use of this guidance approach make investigation of the
hardware requirements compelling.
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